REDUCCION-OXIDACION
Es toda reacción química en la que uno o más electrones se transfieren entre los reactivos, provocando un cambio en sus estados de oxidación.
Para que exista una reacción de reducción-oxidación, en el sistema debe haber un elemento que ceda electrones, y otro que los acepte:
Ø El agente oxidante es el elemento químico que tiende a captar esos electrones, quedando con un estado de oxidación inferior al que tenía, es decir, siendo reducido.
Ø El agente reductor es aquel elemento químico que suministra electrones de su estructura química al medio, aumentando su estado de oxidación, es decir, siendo oxidado.
Ø Cuando un elemento químico reductor cede electrones al medio, se convierte en un elemento oxidado, y la relación que guarda con su precursor queda establecida mediante lo que se llama un par redox. Análogamente, se dice que, cuando un elemento químico capta electrones del medio, este se convierte en un elemento reducido, e igualmente forma un par redox con su precursor oxidado.
Oxidaciones y Reducciones Biológicas
En el metabolismo de todos los seres vivos, los procesos redox tienen una importancia capital, ya que están involucrados en la cadena de reacciones químicas de la fotosíntesis y de la respiración aeróbica. En ambas reacciones existe una cadena transportadora de electrones formada por una serie de complejos enzimáticos, entre los que destacan los citocromos; estos complejos enzimáticos aceptan (se reducen) y ceden (se oxidan) pares de electrones de una manera secuencial, de tal manera que el primero cede electrones al segundo y éste al tercero, hasta un aceptor final que se reduce definitivamente; durante su viaje, los electrones van liberando energía que se aprovecha para sintetizar enlaces de alta energía en forma de ATP.
Otro tipo de reacción redox fundamental en los procesos metabólicos son las deshidrogenaciones, en las cuales un enzima (deshidrogenasa) arranca un par de átomos de hidrógeno a un sustrato; dado que el átomo de hidrógeno consta de un protón y un electrón, dicho sustrato se oxida (pierde electrones). Dichos electrones son captados por moléculas especializadas, principalmente las coenzimas NAD+, NADP+ y FAD que al ganar electrones se reducen, y los conducen a las cadenas transportadoras de electrones antes mencionadas.
El metabolismo implica cientos de reacciones redox. Así, el catabolismo lo constituyen reacciones en que los sustratos se oxidan y las coenzimas se reducen. Por el contrario, las reacciones del anabolismo son reacciones en que los sustratos se reducen y las coenzimas se oxidan. En su conjunto, catabolismo y anabolismo constituyen el metabolismo.
ADP: Es un nucleótido difosfato, es decir, un compuesto químico formado por un nucleótido y dos radicales fosfato unidos entre sí. En este caso el nucleótido lo componen una base púrica, la adenina, y un azúcar del tipo pentosa que es la ribosa.
NAD: La dinucleótido de nicotinamida adenina (abreviada NAD+ en su forma oxidada y NADH en su forma reducida) es una coenzima que contiene la vitamina B3 y cuya función principal es el intercambio de electrones e hidrogeniones en la producción de energía de todas las células.
La Fosforilación: Es la adición de un grupo fosfato, o no fosfato molecular criogenizado inorgánico a cualquier otra molécula. Su papel predominante en la bioquímica lo convierte en un importante objeto de investigación sobre todo en la fosforilación de proteínas y de fructosa. En el metabolismo, la fosforilación es el mecanismo básico de transporte de energía desde los lugares donde se produce hasta los lugares donde se necesita. Asimismo, es uno de los principales mecanismos de regulación de la actividad de proteínas en general y de las enzimas en particular.
La fosforilación más importantes para el metabolismo es la fosforilación del ADP, es decir, la adición de un grupo fosfato al ADP para formar ATP:
ADP + P → ATP + H2O
El ATP así formado transporta la energía del enlace convirtiéndose en la moneda de cambio energética del metabolismo. Hay diversas vías que fosforilan ADP.
Fosforilación a Nivel de Sustrato
La fosforilación a nivel de sustrato es la síntesis de ATP acoplada a una reacción exergónica sin intervención de la enzima ATP-sintasa. Está mediada por enzimas quinasas y se produce, por ejemplo, en el ciclo de Krebs o en la glucólisis; constituye únicamente una pequeña parte del total de ATP producido en la célula.
Fosforilación Oxidativa
La oxidación del alimento durante la respiración libera energía química potencial que es utilizada para sintetizar ATP. El proceso implica la fosforilación oxidativa de moléculas alimenticias como glucosa, ácidos grasos o glicerina (las más comunes). Las moléculas son descompuestas durante una serie de reacciones y la energía liberada en ciertos estados del proceso es utilizada para producir ATP en reacciones de fosforilación. Se calcula que hasta el 90% de la energía celular en forma de ATP es producida de esta forma.
Fotofosforilación
Se refiere al proceso de formación del ATP durante la fase luminosa de la fotosíntesis. La energía lumínica excita y desplaza electrones de la clorofila y otros pigmentos presentes en las plantas, algas y cianobacterias. La energía asociada con los electrones excitados se almacena en el ATP en un proceso que produce más moléculas de este tipo a partir de ADP y fosfato inorgánico.
REFERENCIAS
1. Burriel Martí, Fernando; Arribas Jimeno, Siro; Lucena Conde, Felipe; Hernández Méndez, Jesús (2007). Química analítica cualitativa. Editorial Paraninfo. p. 175. ISBN 9788497321402. Consultado el 16 de octubre de 2013. «[...]
2. Química para el nuevo Milenio- 8b: Edición. Escrito por John William Hill, Doris K Kolb. Página 204.
3. Química: la ciencia central Escrito por Theodore L. Brown,Bruce E. Bursten, Julia R. Burdge. Página 128.
—————